This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

ADDUCT FORMATION BETWEEN BISCYCLOPENTADIENYL TITANIUMDIFLUORIDE AND BORON TRIFLUORIDE AND PHOSPHORUS PENTAFLUORIDE

H. C. Clark^a; Alan Shaver^a

^a Department of Chemistry, University of Western Ontario, London, Ontario, Canada

To cite this Article Clark, H. C. and Shaver, Alan(1975) 'ADDUCT FORMATION BETWEEN BISCYCLOPENTADIENYL TITANIUMDIFLUORIDE AND BORON TRIFLUORIDE AND PHOSPHORUS PENTAFLUORIDE', Journal of Coordination Chemistry, 4: 4, 243 – 245

To link to this Article: DOI: 10.1080/00958977508075907 URL: http://dx.doi.org/10.1080/00958977508075907

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ADDUCT FORMATION BETWEEN BISCYCLOPENTADIENYL TITANIUMDIFLUORIDE AND BORON TRIFLUORIDE AND PHOSPHORUS PENTAFLUORIDE

H. C. CLARK[†] and ALAN SHAVER

Department of Chemistry, University of Western Ontario, London, Ontario, Canada

(Received October 1, 1974; in final form January 24, 1975)

The reactions of organoplatinum cations have been investigated over the past few years in this laboratory.¹ As part of a general program, we recently tried to synthesize the biscyclopentadienyltitanium dication, $Cp_2 Ti^{2+}$ (where Cp = pentahaptocyclopentadienyl). Reaction of $Cp_2 TiCl_2$ with two equivalents of $AgBF_4$ (or $AgPF_6$) in acetone gave, after filtering and evaporating the reaction solution, a red oil. Treatment of this red oil with methanol caused immediate precipitation of yellow $Cp_2 TiF_2$. The isolation of $Cp_2 TiF_2$ has been reported previously from reactions involving fluorine-containing reagents such as silver salts of $CF_3S^{-,2}BF_4^{-}$, PF_6^{-} , SbF_6^{-} and $AsF_6^{-,3}$ Methanolysis of bis(cyclopentadienyl) (ethyl-3ketobutyrato)titanium hexafluorophosphate also yields Cp₂TiF₂⁴. This sort of transfer of fluorine from counter-ion to metal has recently been observed in the reactions of metal bistetrafluoroborates $(M = Co^{2+}, Ni^{2+} and Cu^{2+})$ with triethylenediamine and quinuclidene⁵ in refluxing tetrahydrofurandimethoxypropane azeotrope. The products in these cases were the metal difluorides and BF₃ adducts of the strong nitrogen bases. The phenomenon is not confined to transition metals. $(CH_3)_2 SnF_2$ is formed in the reaction of $(CH_3)_2 SnCl_2$ with two equivalents of AgBF₄ or AgPF₆ in methanol.⁶

It appears that this type of reaction may be quite common. However, in the case of these titanium BF_4 ind PF_6 systems the reactions are not as straightorward as has been reported previously. Specifically, the intermediate red compounds, presumably BF_4 and PF_6 salts of $Cp_2 Ti^{2+}$, have not been mentioned before. In addition we find that $Cp_2 TiF_2$ in $CH_2 Cl_2$ and liquid SO_2 reacts with BF_3 and PF_5 to regenerate these red compounds.

We have conducted some infrared and nmr spectroscopic studies and conductivity measurements on these compounds and solutions of them in liquid SO_2 and CH_2Cl_2 . These data suggest the existence of the equilibria shown and

$$Cp_{2}TiF_{2} + BF_{3} \implies Cp_{2}TiF(BF_{4})$$

$$Cp_{2}TiF(BF_{4}) + BF_{3} \implies Cp_{2}Ti(BF_{4})_{2}$$

$$Cp_{2}TiF_{2} + PF_{5} \implies Cp_{2}TiF(PF_{6})$$

$$Cp_{2}TiF(PF_{6}) + PF_{5} \implies Cp_{2}Ti(PF_{6})_{2}$$

allow us to characterise partially the structure of the BF_4 and PF_6 species.

RESULTS AND DISCUSSION

A molar conductance of $0.051 \text{ ohm}^{-1} \text{ cm}^2$ was found for Cp_2TiF_2 in CH_2Cl_2 , as expected for a non-electrolyte. On the other hand BF₃ and PF₅ react with $CH_2 Cl_2$. In both cases the conductance of the 2×10^{-3} M solutions increased rapidly with time and did not reach an equilibrium value within 1/2 hr. The PF₅ solution turned a distinct brown colour and its molar conductance was in excess of 20 ohm^{-1} cm² and increasing when the solution was discarded. However, in the presence of Cp_2TiF_2 these reactions are inhibited. Very stable readings of $1.09 \text{ ohm}^{-1} \text{ cm}^2$ and $0.651 \text{ ohm}^{-1} \text{ cm}^2$ were obtained for 1×10^{-3} M solutions of Cp₂ Ti(BF₄)₂ and $Cp_2 Ti(PF_6)_2$ respectively. These values indicate a strong interaction between the complex and two equivalents of BF_3 or PF_5 . As a check on the experiment the conductance of a 1×10^{-3} M solution of $[CpFe(CO)_2P(C_6H_5)_3]PF_6$ was measured in CH_2Cl_2 . The molar conductance was 36.2 ohm⁻¹ cm². Molar conductance values greater than 20 ohm⁻¹ cm² have been reported for 1:1 electrolytes in $CH_2 Cl_2^{7}$. We conclude that the complexes do not dissociate into ions in CH_2CI_2 . Hence, either the reaction between Cp_2TiF_2 and BF_3 or PF_5 does not form an ionic product [i.e. $(Cp_2Ti^{2+})(BF_4)_2$ $(Cp_2 Ti^{2+})(PF_6)_2$ or the ionic products that are formed, exist as very tightly bound ion pairs. The

[†]Author to whom correspondence should be addressed.

cation $Cp_2 Ti^{2+}$ would be coordinatively unsaturated (in contrast to $CpFe(CO)_2 P(C_6H_5)_3^+$) so that structures with BF_4 and PF_6 groups coordinated to the titanium can be envisioned. Such structures might not undergo ionic dissociation in weakly polar $ChH_2 Cl_2$ solution.

The infrared spectra of the products obtained as oils via the reaction of $Cp_2 TiCl_2$ with $AgBF_4$ and $AgPF_6$ were the same as those of the products obtained via the reaction of $Cp_2 TiF_2$ with BF₃ and PF₅ respectively in liquid SO₂. The spectra consist of bands due to BF₄ and PF₆ superimposed on the bands from Cp₂TiF₂ except for one very significant difference. In the spectrum of $Cp_2 TiF_2$ bands at 564 and 539 cm⁻¹ have been assigned to titaniumfluorine symmetric and asymmetric stretching modes respectively.⁸ These bands are quite strong and are unchanged when a sample of Cp_2TiF_2 , which has been dissolved in liquid SO_2 and recovered, is used. However, these Ti-F bands are completely absent from the spectra of $Cp_2 Ti(BF_4)_2$ and $Cp_2 Ti(PF_6)_2$ and no new bands down to 300 cm^{-1} are observed. The disappearance of the Ti-F bands in both $Cp_2 Ti(BF_4)_2$ and $Cp_2 Ti(PF_6)_2$ seems to argue convincingly that both titanium-fluorine terminal bonds are not present. This does not rule out the possibility that titanium-fluorine-boron (phosphorus) bridge bonds are present.

While no bands due to BF_3 and PF_5 were observed,⁹ the bands due to BF_4 and PF_6 were not split as might be expected if the high symmetry of these counter-ions was reduced due to coordination.¹⁰ However, since the spectra were run on oils small splittings might not have been resolved.

The ¹H nmr spectrum of Cp₂TiF₂ consists of a triplet in the Cp region.^{2,11} The coupling to the fluorine nuclei is about 2 Hz. When the spectrum is run in $BF_3[O(C_2H_5)_2]_2$, however, this coupling is lost and a single sharp line is observed. The same singlet is observed when Cp_2TiF_2 is treated with stoichiometric amounts of BF3 and PF5 in liquid SO_2 . Cp_2TiF_2 in liquid SO_2 still shows a triplet pattern. It is of interest to note that removal of the coupling occurs for the samples with one quivalent of BF_3 and PF_5 as well as those containing two and four equivalents. The ¹⁹F nmr spectrum of Cp₂TiF₂ is a complex multiplet due to coupling with the ten cyclopentadienyl protons. In $BF_3[(OC_2H_5)_2]_2$ this resonance is not observed and only a broad band due to $BF_3[O(C_2H_5)_2]_2$ is recorded. The resonance due to the fluorine atoms of Cp_2TiF_2 is observed in liquid SO_2 . But in the presence of one, two or four equivalents of BF_3 or PF_5 in liquid SO_2 this

resonance is not found. Only resonances assigned to BF_3 or PF_5 are observed.

One equivalent of BF_3 or PF_5 relaxes the coupling from both fluorine atoms to the Cp protons. At room temperature then the complexes $Cp_2 TiF(BF_4)$ and $Cp_2 TiF(PF_6)$ must undergo catalyzed fluorine exchange. The spectra of the samples containing four equivalents (excess) of BF_3 and PF_5 show only one band due to BF_3 and PF_5 respectively. The BF_4 and PF_6 groups in the complexes $Cp_2 Ti(BF_4)_2$ and $Cp_2 Ti(PF_6)_2$ must rapidly (with respect to the nmr time scale) exchange with free BF_3 and PF_5 in solution.¹²

How does the above data relate to the reactions and structures of the $Cp_2TiF_2-BF_3$ (and PF_5) systems? It seems reasonable that the red oils resulting from the reactions of Cp₂TiCl₂ with AgBF₄ and $AgPF_6$ are the same as those resulting from the reaction of Cp₂TiF₂ with BF₃ and PF₅ respectively. Their infrared spectra are the same (respectively) and they all form $Cp_2 TiF_2$ when treated with methanol. The data suggest the existence of the equilibria shown above. In $CH_2 Cl_2$ and liquid SO_2 these equilibria lie well to the right while in methanol they lie to the left. The interactions of Cp_2TiF_2 with BF₃ and PF₅ are analogous to those between MF_5 and SbF_5^{13} (M = Nb and Ta) and between $(CH_3)_{3-n}$ -SiF_n(n = 1,2) and SbF₅¹⁴. Similar interactions probably occur between Cp₂TiF₂ and TiF₄ and SnCl₄¹⁵. Transition metal halides have been shown to possess Lewis base qualities¹⁶ where it has been assumed that the metal-halide bond is not broken in the complexes formed. We conclude the following about the structures of the complexes $Cp_2 Ti(BF_4)_2$ and $Cp_2 Ti(PF_6)_2$:

1) Simple Ti--F terminal bonds are not present. It is reasonable to assume however that the titanium atom is in close association with fluorine atoms since these complexes decompose to give $Cp_2 TiF_2$ so easily.

2) The complexes do not exist as ionizable salts in CH_2Cl_2 [i.e. $(Cp_2Ti^{2+})-(BF_4)_2$ and (Cp_2Ti^{2+}) $(PF_6)_2$]. This follows from the conductance measurements.

3) The distinction therefore needs to be made between the behavior of $Cp_2 TiF_2$ as a Lewis base with the coordination of two BF₃ or PF₅ groups, and the behavior of $Cp_2 Ti^{2+}$ as an acid with coordination of two BF₄⁻ or PF₆⁻ groups. Our infrared data do not support coordinated counterions since splitting of degenerate vibration was not observed (this does not rule out such coordination however). On the other hand the nmr and infrared data suggests that the $Cp_2 TiF_2$ species does not maintain its integrity. The original fluorine atoms on titanium exchange with the fluorine atoms on boron and phosphorus. It is probable that the truth lies somewhere between the two extremes and the problem of describing the structures is the same as has been found in discussing those of similar derivatives of main group organometallic cations (i.e. one of semantics).¹⁷

ACKNOWLEDGEMENTS

The financial assistance of the National Research Council of Canada is gratefully acknowledged and also the award of a National Research Council of Canada post-Doctoral Fellowship to A.S. We thank Professor P. A. W. Dean for his interest and helpful discussions, and Mrs. Heather Schroeder for obtaining the nmr spectra.

REFERENCES

- 1. M. H. Chisholm and H. C. Clark, Accounts Chem. Res., 6, 202 (1973).
- 2. R. B. King and N. Welcman, Inorg. Chem., 8, 2540 (1969).
- 3. G. Doyle and R.S. Tobias, Inorg. Chem., 6, 1111 (1967).
- 4. D. A. White, J. Inorg. Nucl. Chem., 33, 691 (1971).

- 5. T. R. Musgrave and T. S. Lin, J. Coord. Chem., 2, 323 (1973).
- H. C. Clark and R. G. Goel, J. Organometal. Chem., 7, 263 (1967).
- P. Uguagliati, G. Deganello, L. Busetto, U. Belluco, Inorg. Chem., 8, 1625 (1969).
- 8. P. M. Druce, B. M. Kingston, M. F. Lappert, R. C. Srivastava, M. J. Frazer and W. E. Newton, J. Chem. Soc., A, 2814 (1969).
- 9. K. Nakamoto Infrared spectra of Inorganic and Coordination compounds, 2nd ed. New York, Wiley-Interscience (1970).
- 10.a) S. Buffagni, L. M. Vallarino and J. V. Quagliano Inorg. Chem., 3, 671 (1964).
- b) H. C. Clark and R. J. O'Brien, *Inorg. Chem.*, 2, 1020 (1963).
- A. N. Nesmeyanov, O. V. Nogina, E. I. Fedin, V. A. Dubovitskii, B. A. Kvasov and P. V. Petrovskii, *Dokl. Adad. Nauk. S.S.S.R.*, 205, 857 (1972).
- 12. S. Brownstein, Can. J. Chem., 47, 605 (1969).
- 13. P. A. W. Dean and R. J. Gillespie, Can. J. Chem., 49, 1736 (1971).
- 14. G. A. Olah and Y. K. Mo, J. Amer. Chem. Soc., 93, 4942 (1971).
- 15. P. A. W. Dean and A. Shaver, unpublished observations.
- 16.a) M. Pankowski, B. Demerseman, G. Bouquet and M. Bigorgne, J. Organometal. Chem., 35, 155 (1972).
- b) T. J. Marks, J. Kristoff, A. Alich, D. F. Shriver, J. Organometal. Chem., 33, C35 (1971).
- H. C. Clark in New Pathways in Inorganic Chemistry, E. A. V. Ebsworth, A. G. Maddock, A. G. Sharpe (eds.). Cambridge University Press, 1968.